Medical Oxygen

Emergency hospital during 1918 influenza epidemic, Camp Funston, Kansas. (CC-BY-2.5)

There are some questions about whether the SARS-CoV-2 virus is more or less deadly than the 1918 influenza virus. It’s not really possible to accurately compare the two pandemics’ case and fatality data, for one very big reason. Oxygen!

Today, when someone has any sort of respiratory problem the first likely action is to provide supplementary oxygen. The air we breathe contains about 21% oxygen, which for a healthy person is obviously quite adequate. But for sick people, raising the concentration to near 100% can take the load off their heart and lungs and help prevent other problems like organ failure.

In the 1918 pandemic, the use of supplemental oxygen was not widely known or accepted (as illustrated in the picture, where no one is getting oxygen). There had been some experimentation and use in prior decades (and in treating some chemical weapons victims of the First World War), but it was not yet widespread. Even if it had been enthusiastically embraced, the supplies of oxygen were very limited and it was not readily available on an industrial scale. Therefore we read stories of even young and previously healthy people succumbing to the influenza virus within hours, turning blue due to lack of oxygen in their bloodstream. If oxygen had been available, many of them may have had a reasonable chance to survive and recover. Of course, today we have many other pharmaceutical interventions like steroids and monoclonal antibodies, none of which were available in 1918. But the oxygen is still needed to keep the patient alive long enough so that the pharmaceuticals can have a chance at working.

Where do we get the medical oxygen? There are smaller scale purifying units that take air and concentrate the oxygen in it using membranes to separate the oxygen from nitrogen. These are fine for portable use, smaller scales, or lower flows, but they are not readily scalable to the huge volumes required in a hospital and high-flow oxygen therapy. Likewise, oxygen cylinders are not very practical in hospitals due to their limited capacity. For example, the large “T” size cylinders (about 24 cm diameter by 130 cm tall) only contain about 9,000 L of oxygen once it is depressurized. For patients needing high flow oxygen therapy at up to 60 L per minute, the cylinder would only last about 3 hours or less. If there are a lot of patients, it would take a small army of people constantly moving cylinders in and out of rooms and the hospital. Unfortunately, in poorer and less industrialized parts of the world these options are often the only ones available.

The big industrial oxygen supplies are typically provided in the form of liquid oxygen, shipped and stored in specialized trucks and tanks. The liquid oxygen stored at the hospital is then vapourized into its gaseous form and piped to the patient rooms as required. This is a much more compact and efficient delivery system, since one hundred litres of liquid oxygen expands into about 85,000 L of gaseous oxygen for breathing purposes.

The large scale production and supply of liquid oxygen is a chemical and mechanical engineering accomplishment dating back to the early 1900’s. It took several decades for many plants to be built, with continuous improvements over the years to improve the process and reduce energy requirements. The industrial process uses distillation to separate oxygen from nitrogen (and argon and other trace gases) in air. Since oxygen and nitrogen have quite different boiling points (-183oC for oxygen, and -195.8oC for nitrogen), separation by distillation is a reasonably straightforward approach. However, distillation requires that air be liquified through a combination of pressure and low temperature, and this presents some significant engineering challenges.

Modern plants, often called “Air Separation Units” or ASUs, operate at pressures up to about 6 atmospheres and temperatures in the -170 to -190 range. Clearly it takes some significant compression and refrigeration equipment to carry this out, and the plants are carefully designed to be as energy efficient as possible. The video below, from one major manufacturer, gives a simple overview of the ASU process. Of course, ASUs are built not only for medical oxygen, but also for the many other industrial uses of oxygen such as in steel production, metal cutting, water treatment and chemicals manufacturing.

Bibliography:
Graninge, C. Breath of life: the evolution of oxygen therapy. J.R. Soc. Med. 97: 489-493 (2004).
Heffner, J.E. The Story of Oxygen. Respiratory Care, 58: 18-31 (2013).
Tellier, N. Air Separation and Liquifaction. (https://cryogenicsociety.org/resources/cryo_central/air_separation_and_liquefaction/)

We Don’t Teach Much

“In this way you must understand how laughable it is to say, ‘Tell me what to do!’ What advice could I possibly give? No, a far better request is, ‘Train my mind to adapt to any circumstance’….In this way, if circumstances take you off script…you won’t be desperate for a new prompting.”

Epictetus, Discourses

I ran across this quote from the early 2nd century Stoic philosopher Epictetus the other day (“The Daily Stoic” by Ryan Holiday). It reminded me that in engineering education we can’t possibly teach all the information and facts that one might need after graduation. In chemical engineering, for example, there are thousands of different chemicals, types of equipment, different processes for making so many different products. There are different methods for various pharmaceuticals, papers, metals, solvents, plastics, toothpaste, and the list goes on without end. There is a 27 volume Encyclopedia of Chemical Technology that covers many topics in chemical engineering, but even that has its limitations, even if some superhuman could actually learn everything in it. Forty-five years after starting a chemical engineering program in university and I’m still learning new things every week.

So no, we can’t teach everything an engineer might eventually need to know. We probably can’t even teach a small fraction of what people will eventually know or need to use. So we have to focus on training the engineer’s mind. How to approach problems, how to break them down into logical and manageable pieces. How to understand the science behind new situations. How to recognize the limitations of their skills and knowledge, and how they can address those knowledge gaps (it’s important to know what you don’t know!).

So when students of all sorts ask “why do we have to learn this, when are we ever going to use it?”, the answer may well be “possibly never”. But it’s part of the training of the mind, which definitely will get used eventually.

Largest helium facility in Canada opens in Saskatchewan

After writing a recent post about helium supply and demand, this news article came up about a new helium production facility in Canada. I wasn’t aware that it was under construction, but it’s nice to see some Canadian progress in securing supplies of this important resource. The photo shows some typical chemical engineering design elements like piperacks, process vessels, separators, compressors, etc. How to put together a process like this, in a safe, sustainable, and economical way, is one aspect of chemical engineering education.

Saskatchewan is now officially home to the largest helium purification facility in Canada after opening in Battle Creek on Tuesday.

Source: Largest helium facility in Canada opens in Saskatchewan | Globalnews.ca

Chemical Engineering 2021 Student Design Projects

Photo by fauxels on Pexels.com

Each year, final-year students in Canadian engineering programs pursue open-ended group design projects (“capstone design projects”). This gives them the opportunity to combine the knowledge and skills obtained over the previous 3 academic years (plus work term experience for Waterloo students), and to tackle a problem that is a bit more challenging and wide-ranging than what a typical course assignment can cover.

Our Chemical Engineering class of 2021 has finished up their projects, and some short introductory videos are available for viewing. As usual, the projects are student-selected and they cover a wide range of topics from food processing to low carbon energy systems, reusable plastics to automotive parts manufacturing, and biotechnology to metallurgical processes. Allowing students to pick their own project topic let’s them tailor their experience to an area of interest, that perhaps they want to pursue after graduation.

Anyone interested in chemical engineering, or learning about the wide variety of things that chemical engineers can do, should have a look at some of the videos. They are each only about 1 minute long, give a brief high level overview, and can be found at this link.

Defer University?

With the pandemic situation and the move to online classes by many universities, there is discussion about whether to defer starting university until 2021. This is a complex and significant decision, and an engineer (or prospective engineer) would typically use some sort of decision-making strategy. I’ve written about one decision approach, the Kepner-Tregoe method, in the past with respect to choosing a university. For the decision to defer starting university, let’s try a cost-benefit analysis method.

Continue reading

Graduation Rates Revisited

My blog statistics show that an old post from 2013 on Engineering Failure Rates continues to be a popular one to visit. There is an updated one available too, from 2018. As those blogs note, the data is from Ontario’s CUDO website and their definition of “success” is rather broad. If you start in Engineering, and graduate within 7 years from the SAME university with ANY degree, that counts as success for degree completion. So, if you start in Engineering then switch and graduate with a degree in Music, that’s success. However, if you start in Engineering, then leave before graduation to complete a Veterinary degree at Guelph, that’s not a successful degree completion for their statistics. So if you look at those statistics, you need to be aware of what they actually mean (or don’t mean)!

Those statistics always bothered me, so I came up with an alternative measure of Engineering graduation rates, using the same CUDO data source. My hypothesis is that if we use the Engineering first year registration data for a certain year, and then compare that with the Engineering “degrees conferred” data four years later, then that will give us a rough estimate of “success”, specifically within Engineering programs as a whole.

So that’s what I did with downloads from the CUDO website, with the admission data from 2006 to 2012, and the degrees conferred data from 2010 to 2017. (I used a 5 year comparison for Waterloo, since our program takes 5 years to complete when you include the co-op work experience. All other universities can be completed in 4 years, so I used that comparison for the rest.) Based on this approach, we can summarize the results in the graph below, showing average degree completion rates. The “error bars” show plus and minus one standard deviation of the average “success rates” for each university (a measure of how variable the results are).

I call the graph “apparent success rates” because it still doesn’t use individual student data; it’s based on bulk numbers that can hide a lot of variables. Indeed, as we gaze at the graph we see some obviously puzzling results. The Engineering programs at Windsor and Lakehead are highly successful at graduating more engineering students then they admit!

Clearly there are some problems with this data analysis. For one, it doesn’t take into account the fact that some students at other universities can do an optional co-op or internship that will delay their graduation by a year. Secondly, it is based on first year registration data for each engineering program. This means that the students who transfer into Engineering from other programs within the University, or from other universities, are not counted. Likely this explains the ones where the graduation/success rates are over 100%, and may be a factor for those who have rates approaching 100%.

I have no deep insights into the other universities, but for Waterloo I know that in my experience we have extremely few transfers from other Universities, and very few from other programs at Waterloo. Therefore the average success/graduation rate at Waterloo of around 78% is likely a reasonable ballpark estimate for the fraction of new admits that graduate in 5 years.

This all just illustrates once again that defining “success” is complicated, and getting meaningful data to measure “success” is even harder. We just have to make do with what we can get, and recognize the limitations of the data.

Campus Tours

Anyone considering applying to a university should visit it, if at all possible. Many people visit campus during the summer vacation period. This is convenient for travel, but not always the best time to get an impression, because most campuses are very quiet during the summer. Waterloo is a bit of an exception, since we have classes going throughout the summer for returning co-op students in engineering and other programs.

The fall is probably a better time for a visit, when things are more active and you can get a good feel for the campus in actual operation. Take a day or two off high-school classes and visit a campus! If you’ve never been on a campus visit try the closest one to home, even if you don’t intend to apply there. It’s good to get a practice visit so you know what to expect when you go to other places of more direct interest.

Of course, in some cases it’s not practical or financially feasible to visit a campus that you’re interested in. In that case, using online videos is one way to get a bit of a tour. I think that most universities have some sort of video tour availability. Here’s a recent video made by one of our own class of 1998 civil engineering alumni, Fanny Dunagan. It’s interesting to see what captured her attention when returning for a visit.

Why Engineering is Purple

Engsoc-purple

Some purple students at a Waterloo Engineering event (from engsoc.uwaterloo.ca)

Waterloo’s official colours are black, gold and white, but you might have noticed that Engineering’s brochures, websites and other material have a lot of purple.  Sometimes I’ve been asked why that is, or why we are using Wilfrid Laurier or Western University‘s colours.    The main explanation is that sometimes our students are purple, as illustrated in the picture, so why not use that as our theme colour?  But there are purple engineering students at other universities like Queen’s, so there is more too it than just that. There is a bit of a long explanation that can be given in more detail as follows.

Continue reading

The Cost of Tuition Savings

A few weeks ago the Ontario government mandated a 10% tuition roll-back for domestic (i.e. Canadian and Permanent Resident) students.  I wrote a brief blog post about first impressions.  Although the government is on a deficit reduction path, this move was kind of strange since it doesn’t seem to directly save the government much, if any, money.

I guess the intention is to save the student and families some money, which is nice, but it comes at a cost.  That cost is now becoming clearer, according to internal news at Waterloo.  Basically, to deal with the cut in the 2019/2020 budget year (just about to start), there needs to be about a 3% cut in expenditures.  This is just the start for this year, as there is still an ongoing deficit in the following years to be dealt with.

A cut of 3% doesn’t seem like too much in the corporate world, where there is usually some profit margin and other reserves to work with.  Universities, being non-profit, have much less flexibility though.  So there are two main areas where cuts can take place within an academic department like Chemical or Mechanical Engineering…

Discretionary Spending:  this would be stuff like photocopying (already largely gone), refreshments at seminars and events for students, support for student travel to conferences and competitions, telephones for graduate student offices (already gone in my department), travel costs to bring in seminar speakers from other universities and countries, various other little things like these.  There is actually not a lot of money spent in these areas, as far as I am aware, so not a lot of savings are to be had.

Faculty and Staff Positions:  The vast majority of spending in an academic department is on salaries, something like 80%+ if I recall.  Therefore to hit a 3% cost savings likely requires something close to a 3% reduction in personnel.  The news article refers to this as a “return of open positions”, which essentially means permanently shrinking the personnel levels by not replacing people who leave or retire (unless new funding becomes available at some future point).

For the Faculty of Engineering, with 318 faculty members, this would mean dropping about 10 positions through attrition.  Roughly speaking, that is equivalent to 26 courses that can’t be mounted, as well as fewer available supervisors for student projects and graduate student research.  For an engineering program, you can’t stop teaching the core undergraduate courses, so the loss of courses would be primarily in electives and graduate courses.  The overall effect will probably not be immediately noticeable to most students, but eventually there may be fewer elective courses to pick from in upper years.  There are some mechanisms to try to reduce the impact on course availability, but we’ll see what happens next I guess.  According to the news item, the 2020/2021 budget year may require further cuts because of an ongoing structural deficit.

The one thing I haven’t mentioned above is research.  That’s because research isn’t directly funded from tuition, it comes from government and industry grants and contracts for specific projects.  So I wouldn’t expect any immediate effects on research activities and conference participation by graduate students and faculty.

U Waterloo #13 Worldwide!

The latest university ranking scheme is one from Times Higher Education (THE) and their University Impact Rankings for 2019.  This new ranking is based on the 17 UN Sustainable Development Goals and how well each university contributes towards meeting those goals. According to a news summary, Waterloo does particularly well on 4 of the goals, namely Partnership for the Goals, Sustainable Cities and Communities, Climate Action, and Reduced Inequalities.

Listing of the 17 Sustainable Development GoalsOverall, Canadian universities score well in these sustainability rankings, with McMaster #2, UBC tied for #3, University of Montreal tied for #7, York #26, and Toronto #31.  McGill comes in somewhere in the 101-200 range.  I haven’t spent any time looking at the details yet, so I’m not sure what contributes to some of these rankings.

A lot of the “top” US universities didn’t participate in these rankings, so it’s hard to make many comparisons.  The top 3 ranked US colleges in these rankings were U of North Carolina at Chapel Hill at #24, Arizona State at #35, and U Maryland Baltimore County at #62.  I’m aware of these places because they have strong STEM programs and research activities, but most Canadians probably aren’t aware of them.  Perhaps next year more US colleges will participate.

In general, sustainable development is an important goal and increasingly a part of engineering education and practice.  Engineers Canada, the body responsible for accreditation of engineering education in Canada (among other things), has a national guideline on sustainable development for professional engineers published in 2016.  Various bits and pieces of this are already built into our curriculum for chemical engineers (and I assume in other disciplines), but there are further improvements we continue to work towards.

 

For further news details:  https://uwaterloo.ca/news/news/university-waterloo-among-top-schools-world-social-and