Co-op student creates “bot-tender” on his first work term

An interesting story about a co-op student’s first work term. Getting that first job can be a struggle, but first-year students can be much more innovative than some people give them credit for.  

 

By Jillian Smith.

Caleb Dueck, a first work-term co-op student in mechatronics engineering, created not one, but two robot bartenders while working at Eascan Automation in Winnipeg. The pair of robots, one for pouring and one for serving, can pour a perfect pint in just a minute and a half.

Eascan Automation partnered with a local brewery where the “bot-tenders” made their first public appearance last month. Dueck spent hours programming the robots before the launch and said “I was so pleased to see how many people took videos and enjoyed using the robot. What I enjoyed most is when co-workers were impressed. It made me proud of the hard work I had put in.”

When searching for his first co-op job, Dueck reached out to many companies in Winnipeg before securing a job at Eascan Automation. “Though I had to wait longer than I would’ve liked for this job, I’m very glad that I did. I have learned so much about industrial automation, the different methods and components that are employed, and how to program collaborative robots and PLC’s,” said Dueck. Dueck shared that he feels happy to be a part of the University of Waterloo’s co-op program and to have such an impactful and innovative experience in his first work term.   Dueck’s contributions to his co-op employer don’t end with the robot bartenders. Dueck said, “My next large project is to make a cart that has all the necessary electronic components necessary to run tests on in-house projects. Today I’m off to help at a milk bottling company by programming a servo that will adjust the weight of milk put in.”

Dueck is looking to have a future career in product development, where he can continue to use the skills he has learned at Waterloo and on his co-op work term to help make more physical system designs.Learn more about Eascan Automation.

Source: Thursday, March 28, 2019 | Daily Bulletin | University of Waterloo

2019 Chemical Engineering Capstone Design Projects | Capstone Design | University of Waterloo

This link gives a list and brief description of all of our fourth year design projects this year.  Quite a range of project fields, from polymers to green buildings, water treatment, hydroponics, and waste treatment.  The one on chocolate processing catches my eye!

Source: 2019 Chemical Engineering Capstone Design Projects | Capstone Design | University of Waterloo

New X-ray technology in testing with cancer patients 

Interesting research project in our Electrical and Computer Engineering department.  Reduces the need for CT scans and their high radiation doses.

A digital X-ray imager developed by a Waterloo Engineering startup is being tested on cancer patients with lung nodules in a pilot study at Grand River Hospital in Kitchener.

Source: New X-ray technology in testing with cancer patients | Engineering | University of Waterloo

Life extending technology | TheRecord.com

A story at the link below about a company started by one of our nanotechnology engineering graduates (and a Masters in Mechanical Engineering, according to his LinkedIn page).  The technology is based on SPR, or Surface Plasmon Resonance, and interesting material property that appears at the nanoscale.  Some of my research work is based on this phenomenon, and this seems like a nice piece of equipment.

Kitchener startup’s ‘life extending’ technology helps researchers study disease and develop new medicines

KITCHENER — Ryan Denomme pursues cutting edge science from inside an old factory building where his grandmother used to work.

Denomme is the co-founder and chief executive officer of Nicoya Lifesciences, which recently launched the second version of its desktop device that measures interactions between some of the most important building blocks in the human body — proteins.

Source: Life extending technology | TheRecord.com

Problem Lab

Water Testing: From Research to Kickstarter

One focus of my research group’s efforts over the past 10 years has been collaborative R&D with small and start-up companies.  They often have some very interesting ideas and needs, but lack the facilities and technical team to do the work in-house.  So this is a perfect opportunity for us to help them out with creating new businesses and for my students to get some “real-world” research experience with commercialization projects.

One major effort has been in the development of nanotechnology for rapid water quality testing, in particular for bacterial contamination.  Traditional laboratory methods require 3 to 7 days to complete, which is a rather long time to wait if you’re concerned about your water quality.  Through our collaborative R&D projects, we’ve developed a test method that can give an answer in a few minutes.  This rapid feedback allows people to make informed decisions about what to do next, whether to treat the water further, or send samples to a lab for more extensive testing, etc.

2089771938b2425c496dfb544482211e original

Prototype ExactBlue water testing system.

One recent development is the creation of a more automated, smart-phone based system that’s suitable for regular consumer use.  A prototype model is shown in the photograph.  We’ve been testing the prototype devices with our nanotechnology-based reagent (which goes into the test tube), and doing validation and calibration work.  Everything is looking good and everyone has been pleased with the results.  It’s reliably and quickly detecting microbial contamination in our water samples, and there are some other water tests under development that will be able to use the same platform.

To get to the next stage, which is production of the first batch of devices for sale, the company has just launched a Kickstarter campaign.  Have a look at their Kickstarter website to see much more information about the technology and where they are headed.

University of Waterloo students make a big splash in the 2017 AquaHacking semi-finals | Water Institute

An interesting competition event showcasing environmental water quality innovations by student groups.  Sponsored by the Water Institute at Waterloo, one of the research centres I belong to.

The AquaHacking 2017 semi-final competition unfolded last week at CIGI. By the end of the evening, five teams were chosen to move on to the final competition at Waterloo on September 13. It was a difficult decision for the five judges, as all 17 teams that competed offered innovative ideas that tackled the challenges and opportunities facing Lake Erie.

Source: University of Waterloo students make a big splash in the 2017 AquaHacking semi-finals | Water Institute