U Waterloo #13 Worldwide!

The latest university ranking scheme is one from Times Higher Education (THE) and their University Impact Rankings for 2019.  This new ranking is based on the 17 UN Sustainable Development Goals and how well each university contributes towards meeting those goals. According to a news summary, Waterloo does particularly well on 4 of the goals, namely Partnership for the Goals, Sustainable Cities and Communities, Climate Action, and Reduced Inequalities.

Listing of the 17 Sustainable Development GoalsOverall, Canadian universities score well in these sustainability rankings, with McMaster #2, UBC tied for #3, University of Montreal tied for #7, York #26, and Toronto #31.  McGill comes in somewhere in the 101-200 range.  I haven’t spent any time looking at the details yet, so I’m not sure what contributes to some of these rankings.

A lot of the “top” US universities didn’t participate in these rankings, so it’s hard to make many comparisons.  The top 3 ranked US colleges in these rankings were U of North Carolina at Chapel Hill at #24, Arizona State at #35, and U Maryland Baltimore County at #62.  I’m aware of these places because they have strong STEM programs and research activities, but most Canadians probably aren’t aware of them.  Perhaps next year more US colleges will participate.

In general, sustainable development is an important goal and increasingly a part of engineering education and practice.  Engineers Canada, the body responsible for accreditation of engineering education in Canada (among other things), has a national guideline on sustainable development for professional engineers published in 2016.  Various bits and pieces of this are already built into our curriculum for chemical engineers (and I assume in other disciplines), but there are further improvements we continue to work towards.

 

For further news details:  https://uwaterloo.ca/news/news/university-waterloo-among-top-schools-world-social-and

Autism and Air Quality

Autism, or more accurately Autism Spectrum Disorder (ASD), is in the news and public view a lot in recent years.  According to some recent reports, it is now diagnosed in 1 out of 68 children (1.47%) in the U.S.  Reasons for the apparent increase in diagnoses over recent decades are complex, but they lead us to wonder what is happening and what are the causes?

Recent scientific literature suggests that the specific causes are largely unknown, but there is a very strong genetic component (heritability of 80%).  Unfortunately, even the genetic aspects are very uncertain and probably highly complex, not just a simple set of genes like the ones that determine your eye colour.  Although genetics may play a large role, there are also indications that environmental factors are involved, perhaps in some sort of interaction with the genetic factors.

The popular and social media keep going in circles about vaccines, a factor for which there is no reliable scientific evidence at all.  At the same time, there seems to be complete ignorance of a growing body of scientific literature linking ASD with air quality.  A quick search through peer-reviewed scientific literature using the Scopus database shows at least 160 papers that mention “autism and ‘air pollution'” somewhere in the publication over the past 20 years.

I don’t know a lot about ASD, but I can comment on air pollution and so here I’ll discuss what I see from some of this literature.  Much of the research literature is only fully available if you have access to a university library (like me), but I’ll try to provide some links to at least the summary or abstract of the studies.  Much of this literature is highly technical however, so don’t worry if it’s not so easy to digest.

Continue reading

Cruise Ship Air Quality

An interesting news story about the measurement of air quality on cruise ships appeared recently.  Specifically, it dealt with the concentration of ultrafine particulate (UFP) matter in the air on four cruise ships, measured by a researcher from Johns Hopkins University.  UFP is invisible matter with diameters of around 100 nanometres (nm), which is about  1,000 times smaller than a human hair, and it is implicated in airway inflammation and effects on other organs in the human body.  Being interested in air quality, I looked up the actual study report which you can also read here.  Here is my take on the work and meaning… Continue reading

Ontario’s New Climate Change Plan

The new Ontario government recently released their plan to tackle carbon emissions and climate change.  This comes after scrapping the previous government’s relatively new cap-and-trade scheme that was set up in collaboration with Quebec and California.  Below I’ll give a detailed analysis of various parts of the plan, but here is my high level overview.  There are some promising bits and pieces (without knowing a lot of details yet), but it is relatively unambitious and somewhat odd in its approach.  This new government has generally focused on reducing regulation and taxpayer-funded spending, but this plan implements additional regulations and uses tax money to subsidize industry.  This seems inconsistent.  If you want to see the plan and comment, here is the link.  Now for my detailed analysis… Continue reading

Ontario Climate Change Plan Input

The new Ontario government quickly trashed the beginnings of an approach to reducing carbon emissions and climate change, i.e. a “cap and trade” system in collaboration with California and other provinces and states.

Now the government is looking for input into their promised new and improved approach, which you can provide at https://www.ontario.ca/form/tell-us-your-ideas-climate-change .   It’s open until November 16 2018.

A recent report has re-confirmed that we only have until about the year 2030 to substantially reduce carbon dioxide emissions, before the goal of keeping the global average temperature increase to less than 1.5 degrees Celsius becomes physically impossible.  (This is actually not surprising news since it’s been known for many years in the scientific literature, while the world at large continues to do nothing substantial).

Young people, and parents or grandparents of young people, should be commenting because these are the ones who will be inheriting the problem and all of its consequences over the next few decades.

Long-term effects of forest fires pose threats to drinking water

An interesting article about my colleague Prof. Emelko’s research.  I’m somewhat jealous that she gets to fly in a helicopter!

Forest fires are sweeping North America with detrimental environmental, economic and human impacts. A research team, led by University of Waterloo Engineering professor Monica Emelko, will receive $5.5 million from the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Strategic Partnership Grant for Networks to provide new knowledge on the impacts of different forest management strategies on drinking water source quality and treatability.

Source: Long-term effects of forest fires pose threats to drinking water | Water Institute | University of Waterloo

Garbage Research

Over the past month I’ve spent some time on research topics related to garbage.  Or more accurately, energy from waste, sustainable materials management, circular economy issues, reduction and recycling.  To the public, such things may not be as exciting as self-driving cars, but as landfills, oceans, and beaches fill with wastes they are becoming more noticeable and pressing issues.

First, I helped to organize our 5th annual Resource Recovery Partnerships Conference here at Waterloo in late June.  Over two days, we had lots of presentations and networking among academic, industrial and municipal government people discussing various issues related to waste reduction and management.  Shortly after that, I attended the Air & Waste Management Association’s annual conference, held in Hartford CT.  There, I saw a number of interesting presentations on “zero waste”, sustainability, and case studies of projects.  Between these two events I learned a few things that I can summarize below: Continue reading

University of Waterloo students make a big splash in the 2017 AquaHacking semi-finals | Water Institute

An interesting competition event showcasing environmental water quality innovations by student groups.  Sponsored by the Water Institute at Waterloo, one of the research centres I belong to.

The AquaHacking 2017 semi-final competition unfolded last week at CIGI. By the end of the evening, five teams were chosen to move on to the final competition at Waterloo on September 13. It was a difficult decision for the five judges, as all 17 teams that competed offered innovative ideas that tackled the challenges and opportunities facing Lake Erie.

Source: University of Waterloo students make a big splash in the 2017 AquaHacking semi-finals | Water Institute

Research on Infection Control

A tragic statistic tells us that of all the people admitted to hospitals for various reasons, about 10% will get sick from an infection picked up in the hospital, something called a Healthcare Acquired Infection (HAI) or nosocomial infection.  Of these, about 5% will die from it, which corresponds to about 10,000 Canadian deaths per year.  The additional costs of treating these infections add up to between $4 and $5 billion in Canada.  The consequences are proportionately similar in other regions such as the U.S. and Europe.  The increases in antibiotic resistance in bacteria are adding to the problem.

Hospital infection control has traditionally focused on hand-washing, isolation, and cleaning and disinfection protocols to minimize the spread of “germs”.  However, there is a limit to how far these can go, since they rely on consistent human behaviour, which is naturally inconsistent.  Therefore in recent years there has been more focus on “engineered” approaches to infection control.  To this end, my research group and I have been working with the Coalition for Healthcare Acquired Infection Reduction (CHAIR) to help develop and test materials, processes and devices that may help in the fight against HAIs.

One project we finished tested the effects of an automated ultraviolet light (UV) disinfection device placed in patients’ bathrooms to control the background bacterial contamination between uses.  The paper can be read on this website.  The data indicated that it was possible to dramatically lower bacterial contamination levels with this device, which was nice to see.

In other work, we’ve been collaborating with Aereus Technologies to develop new antimicrobial materials and coatings for use on hospital “high-touch” surfaces and equipment.  This doesn’t eliminate the need for surface cleaning and disinfection, but it helps to kill the germs that land there between cleanings and thus reduce the chance for spread of infections.

In other more basic research, we’ve been collaborating with various other professors here at Waterloo to identify novel antimicrobial materials or detection methods for contaminants.  For example, with Prof. Michael Tam’s group we’ve published a couple of studies on antibacterial cellulose materials (abstracts are available here and here).  We recently published another paper on detection of bacterial contamination in water using an interesting combination of enzymology and nanotechnology.

If you’re wondering what this has to do with Chemical Engineering, well basically this is chemical engineering.  Working with production and characterization of materials, interactions of materials, life science and biochemistry…those are all part of chemical engineering education and possible career paths.

Hopefully over the next few years this HAI problem will begin to see some progress and we can continue to contribute to the solutions.