Online Teaching Experience

The last two weeks of our lectures for the Winter term (last two weeks of March) were all done “online”, since the on-campus activities were shut down. This was an interesting experience, especially since we only had a week to prepare. It took quite a few hours of effort to figure out the online technology and work out different ideas and approaches before starting.

For my Air Pollution Control course, I used Webex to deliver the last two weeks of lectures live, sort of like some Webinars I’ve done in the past. These lectures were also recorded so that students who couldn’t attend “live” could look at them later. I liked the live aspect, so that students could submit questions via the chat function as we went along. I think that the ability to ask and answer questions is important, and you lose something when it can’t be spontaneous.

Luckily for me, the last two weeks of material in my course was relatively easy to adapt for online delivery. It was largely descriptive, not so much mathematical or technical. Some things that I would have normally done on the board in a classroom I had to adapt into a powerpoint deck, but it wasn’t too bad.

Delivering a whole course online is another matter, which my colleagues are scrambling to do for the term starting in May. Doing it really well takes substantial development work and a pedagogical re-think of virtually everything about the course. From what I’ve read, properly developing a truly excellent online course can take many months of preparation, audio/video recording, and editing.

Unfortunately we haven’t had a lot of time to do this, but our instructors seem to be seriously working on it as best as they can. I don’t have any courses to teach in the May-August term, but I’m keeping a close eye on how it’s done in case we are still teaching online in September when I teach another course. The university has developed a website where we can find some suggestions and other resources for online teaching. I hope we can have classroom teaching again in September, but there are some doubts and I guess we have to be prepared for anything at this stage.

Preparing for Tests

Around this time of year, some first year students (and others too) start to realize that they actually don’t know how to effectively study, learn material, and prepare for tests.  The memorization and rote learning strategies that may have been OK for high school usually don’t work well at the university level.  It’s not too late to change however, and there are various resources available to help, including at our Student Success Office.  There are some that are more engineering-specific, such as the following one I found a few years ago. Continue reading

Engineering Failure Rates-Redux

Here’s an update on a popular old post, with some new data and comments.

I’m never quite sure why people ask about failure rates, or what they are expecting.  Do they want to hear that the failure rate is high, so they are convinced it’s a tough (and therefore good) program?  Or maybe they don’t want the failure rate to be high, because they are concerned that they won’t be successful?  I’m not sure what the motivation for the question is, but anyways let’s examine failure rates.  Continue reading

Engineering 101 Welcome

Engineering 101 is a type of orientation event held in July for new admitted students.  It’s an opportunity to come to campus and look around, meet some fellow students, get some tips for success, and get some errands done before the rush starts in September.  There is an online guide summarizing everything, which is good for those who can’t make the trip or who want to review some of the advice.

I was asked to make some opening remarks, so following is a version of what I said. Continue reading

Amazon partners with Waterloo to support AI research | Waterloo Stories

A link below to an interesting development, where Amazon is providing Waterloo Engineering and 3 other U.S. universities with support and Alexa-enabled devices  for use in teaching, research and student design projects. 

Photo: cofoistome/iStock/Thinkstock

Recent advances in the fields of human-machine interaction and artificial intelligence (AI) have been so swift that even experts like Fakhri Karray shake their heads in amazement.

Source: Amazon partners with Waterloo to support AI research | Waterloo Stories

An Amazing Statscan Skills Study | HESA

Source: An Amazing Statscan Skills Study | HESA

An interesting post from our friends at Higher Education Strategy Associates, summarizing a Statistics Canada study on employment skills requirements.  A couple of graphs are reproduced below,  and follow the link above for more details, but here’s a quick take-away from my perspective.

  • Different job categories require different levels of reading comprehension and writing skills.
  • Architecture, engineering and related occupations require the highest levels of reading comprehension and writing skills (the red striped bars in the graphs below).
  • That’s why in engineering admissions and education we’re interested and concerned about reading, writing and communications skills.  There is still lots of room for improvement in our curricula, but it’s an ongoing effort.
  • Not surprisingly, architecture and engineering also require the highest levels of complex problem solving skills.

Getting Ready to Learn

For some new university students, one of the most shocking and troublesome problems they encounter is the realization that they don’t actually know how to learn.  The strategies they used in high school no longer work well enough to succeed in a fast-paced and challenging university program.  Rote learning and memorizing solution methods for problems will generally not work any more, and a deeper level of understanding is required.  In some cases students can’t adapt fast enough and end up having to repeat courses or a term, or perhaps leave the university entirely.

That’s why I like and recommend this Coursera course, “Learning How to Learn”.    It’s from the University of California, San Diego and taught by an engineering professor, Barbara Oakley (and others).  I haven’t taken the course, but have seen quite a few parts of it a while ago.    For anyone starting university in September, this would be a worthwhile investment of your time, and will help identify good learning and study habits to use.   It’s probably good for high school students too, who are looking to do better.  (I think it’s free, or at least it used to be.)

The concepts the course covers are not revolutionary or unusual.  Most of our faculty would recommend the same things to first year students:  get enough sleep and keep a normal schedule; go to class; don’t procrastinate; set up a study schedule; engage all your senses in the material (seeing, hearing, doing/practicing, articulating); don’t get bogged down too long on one problem, etc.  But the course is nice because it presents the science and neurology behind these recommendations, and why they are important for learning and actually understanding the concepts more deeply.  Also, I thought is was nicely presented, interesting, and not difficult to follow.

Capstone Design Projects

March is the season for “Capstone Design Project” presentations at Waterloo Engineering.  These are events where groups of graduating students present and explain the design projects they have been working on for the past 8 to 12 months.  Working on a significant, open-ended design project is a feature in all engineering programs in Waterloo and across Canada, to my knowledge.  These “Design Symposia” are open to the public.

Where do the topics for these design projects come from?  There are 3 typical sources:  1) some professors provide an idea, likely related to their ongoing research projects; 2) companies approach us with ideas that they would like someone to work on; 3) the student groups come up with their own ideas.

For companies, this is an opportunity to have some ideas explored in more detail and for free (other than some time spent).  Many companies have some new ideas or side-projects that would be nice to do, but they don’t have the time or resources to follow-up on them right away.  Having a student group work on it can help them scope-out the idea and see if it is worthwhile to pursue more aggressively in the future.  For the students, they get more experience working on a real-world problem, possibly in an industry sector they want to learn more about.  This can be a nice addition to the experience they already gained during their co-op work terms.

Student groups that come up with their own idea are often the source of new innovations and start-up companies that they build after graduation.  At Waterloo, any novel idea that a student creates is owned by them.  The university supports innovation and entrepreneurship, but doesn’t attempt to take it over in any way.

For high school students who are thinking about pursuing engineering, these projects are a good way to get a feeling for what you can do in the different disciplines.  So check out these links for project titles or descriptions:

Management Engineering
Nanotechnology Engineering
Software Engineering
Civil, Environmental, Geological Engineering
Electrical & Computer Engineering
Mechatronics Engineering
Mechanical Engineering
Chemical Engineering
Systems Design Engineering

A couple of programs are missing their project lists, but will probably be updated in the coming days.  See this link.

Things People Say About Co-op

Engineering Five building at the University of...

Engineering Five building at the University of Waterloo (Photo credit: Wikipedia)

One of Waterloo Engineering’s major features for the past 50+ years has been the co-operative education system (“co-op”), where students alternate every 4 months (more or less) between academic classes on-campus and relevant work experience somewhere out there in the “real world”.  In our system, Engineering students get 6 work opportunities, therefore 6 x 4 months = 24 months of work experience before graduation.  There are various websites available giving more information and other details, including this one or this one.  Over the years I’ve heard a number of comments and questions about co-op, and thought it might be useful to summarize some of the common and interesting ones here.

Continue reading

Students’ use of laptops in class found to lower grades – The Globe and Mail

Below is an article summarizing a study that measured the potential negative effects of bringing a laptop to lectures, i.e. you end up with lower grades.  The study confirms what many professors informally observe, and what has been measured in other studies, such as a couple described in this document from Stanford’s website.

For note-taking in engineering classes, laptops are almost useless.  Pen and paper may be old-fashioned, but it’s still the quickest and easiest medium for quick sketches, free body diagrams, derivations of equations full of Greek symbols, etc.  We recommend (and some professors insist) that you leave the laptops at home or in your bag.

I see very few, if any, laptops in the lectures for the fourth-year (senior) courses I teach.  Since fourth-year students are the ones who successfully got through the first three years, that’s probably a good hint for first year students. Continue reading