The Cost of Tuition Savings

A few weeks ago the Ontario government mandated a 10% tuition roll-back for domestic (i.e. Canadian and Permanent Resident) students.  I wrote a brief blog post about first impressions.  Although the government is on a deficit reduction path, this move was kind of strange since it doesn’t seem to directly save the government much, if any, money.

I guess the intention is to save the student and families some money, which is nice, but it comes at a cost.  That cost is now becoming clearer, according to internal news at Waterloo.  Basically, to deal with the cut in the 2019/2020 budget year (just about to start), there needs to be about a 3% cut in expenditures.  This is just the start for this year, as there is still an ongoing deficit in the following years to be dealt with.

A cut of 3% doesn’t seem like too much in the corporate world, where there is usually some profit margin and other reserves to work with.  Universities, being non-profit, have much less flexibility though.  So there are two main areas where cuts can take place within an academic department like Chemical or Mechanical Engineering…

Discretionary Spending:  this would be stuff like photocopying (already largely gone), refreshments at seminars and events for students, support for student travel to conferences and competitions, telephones for graduate student offices (already gone in my department), travel costs to bring in seminar speakers from other universities and countries, various other little things like these.  There is actually not a lot of money spent in these areas, as far as I am aware, so not a lot of savings are to be had.

Faculty and Staff Positions:  The vast majority of spending in an academic department is on salaries, something like 80%+ if I recall.  Therefore to hit a 3% cost savings likely requires something close to a 3% reduction in personnel.  The news article refers to this as a “return of open positions”, which essentially means permanently shrinking the personnel levels by not replacing people who leave or retire (unless new funding becomes available at some future point).

For the Faculty of Engineering, with 318 faculty members, this would mean dropping about 10 positions through attrition.  Roughly speaking, that is equivalent to 26 courses that can’t be mounted, as well as fewer available supervisors for student projects and graduate student research.  For an engineering program, you can’t stop teaching the core undergraduate courses, so the loss of courses would be primarily in electives and graduate courses.  The overall effect will probably not be immediately noticeable to most students, but eventually there may be fewer elective courses to pick from in upper years.  There are some mechanisms to try to reduce the impact on course availability, but we’ll see what happens next I guess.  According to the news item, the 2020/2021 budget year may require further cuts because of an ongoing structural deficit.

The one thing I haven’t mentioned above is research.  That’s because research isn’t directly funded from tuition, it comes from government and industry grants and contracts for specific projects.  So I wouldn’t expect any immediate effects on research activities and conference participation by graduate students and faculty.

U Waterloo #13 Worldwide!

The latest university ranking scheme is one from Times Higher Education (THE) and their University Impact Rankings for 2019.  This new ranking is based on the 17 UN Sustainable Development Goals and how well each university contributes towards meeting those goals. According to a news summary, Waterloo does particularly well on 4 of the goals, namely Partnership for the Goals, Sustainable Cities and Communities, Climate Action, and Reduced Inequalities.

Listing of the 17 Sustainable Development GoalsOverall, Canadian universities score well in these sustainability rankings, with McMaster #2, UBC tied for #3, University of Montreal tied for #7, York #26, and Toronto #31.  McGill comes in somewhere in the 101-200 range.  I haven’t spent any time looking at the details yet, so I’m not sure what contributes to some of these rankings.

A lot of the “top” US universities didn’t participate in these rankings, so it’s hard to make many comparisons.  The top 3 ranked US colleges in these rankings were U of North Carolina at Chapel Hill at #24, Arizona State at #35, and U Maryland Baltimore County at #62.  I’m aware of these places because they have strong STEM programs and research activities, but most Canadians probably aren’t aware of them.  Perhaps next year more US colleges will participate.

In general, sustainable development is an important goal and increasingly a part of engineering education and practice.  Engineers Canada, the body responsible for accreditation of engineering education in Canada (among other things), has a national guideline on sustainable development for professional engineers published in 2016.  Various bits and pieces of this are already built into our curriculum for chemical engineers (and I assume in other disciplines), but there are further improvements we continue to work towards.

 

For further news details:  https://uwaterloo.ca/news/news/university-waterloo-among-top-schools-world-social-and

Co-op student creates “bot-tender” on his first work term

An interesting story about a co-op student’s first work term. Getting that first job can be a struggle, but first-year students can be much more innovative than some people give them credit for.  

 

By Jillian Smith.

Caleb Dueck, a first work-term co-op student in mechatronics engineering, created not one, but two robot bartenders while working at Eascan Automation in Winnipeg. The pair of robots, one for pouring and one for serving, can pour a perfect pint in just a minute and a half.

Eascan Automation partnered with a local brewery where the “bot-tenders” made their first public appearance last month. Dueck spent hours programming the robots before the launch and said “I was so pleased to see how many people took videos and enjoyed using the robot. What I enjoyed most is when co-workers were impressed. It made me proud of the hard work I had put in.”

When searching for his first co-op job, Dueck reached out to many companies in Winnipeg before securing a job at Eascan Automation. “Though I had to wait longer than I would’ve liked for this job, I’m very glad that I did. I have learned so much about industrial automation, the different methods and components that are employed, and how to program collaborative robots and PLC’s,” said Dueck. Dueck shared that he feels happy to be a part of the University of Waterloo’s co-op program and to have such an impactful and innovative experience in his first work term.   Dueck’s contributions to his co-op employer don’t end with the robot bartenders. Dueck said, “My next large project is to make a cart that has all the necessary electronic components necessary to run tests on in-house projects. Today I’m off to help at a milk bottling company by programming a servo that will adjust the weight of milk put in.”

Dueck is looking to have a future career in product development, where he can continue to use the skills he has learned at Waterloo and on his co-op work term to help make more physical system designs.Learn more about Eascan Automation.

Source: Thursday, March 28, 2019 | Daily Bulletin | University of Waterloo

What Our Rescue Dog Taught Me About Life, Learning, and Creativity – John Spencer

A resting Greyhound.

The lessons listed in this blog link are good for students, and anyone for that matter.  Plus it features a greyhound, one of my two favourite dogs.

I wasn’t always a dog lover. I used to be a dog-liker and most of the time a dog-tolerator. I never understood why people would get bumper stickers with their favorite dog breed and I …

Source: What Our Rescue Dog Taught Me About Life, Learning, and Creativity – John Spencer

2019 Chemical Engineering Capstone Design Projects | Capstone Design | University of Waterloo

This link gives a list and brief description of all of our fourth year design projects this year.  Quite a range of project fields, from polymers to green buildings, water treatment, hydroponics, and waste treatment.  The one on chocolate processing catches my eye!

Source: 2019 Chemical Engineering Capstone Design Projects | Capstone Design | University of Waterloo

Three engineering subjects rank in the world’s top 100 | Engineering | University of Waterloo

See the link below for the full story, but nice to see my department (Chemical Engineering) ranked in the top 100 worldwide.  The two others are Electrical Engineering (49th) and Civil Engineering (51 to 100 range).  Mechanical Engineering ranked in the top 150.

Waterloo Engineering notched three top-100 results in the Quacquarelli Symonds (QS) worldwide university subject rankings released today for 2019.

Source: Three engineering subjects rank in the world’s top 100 | Engineering | University of Waterloo

Autism and Air Quality

Autism, or more accurately Autism Spectrum Disorder (ASD), is in the news and public view a lot in recent years.  According to some recent reports, it is now diagnosed in 1 out of 68 children (1.47%) in the U.S.  Reasons for the apparent increase in diagnoses over recent decades are complex, but they lead us to wonder what is happening and what are the causes?

Recent scientific literature suggests that the specific causes are largely unknown, but there is a very strong genetic component (heritability of 80%).  Unfortunately, even the genetic aspects are very uncertain and probably highly complex, not just a simple set of genes like the ones that determine your eye colour.  Although genetics may play a large role, there are also indications that environmental factors are involved, perhaps in some sort of interaction with the genetic factors.

The popular and social media keep going in circles about vaccines, a factor for which there is no reliable scientific evidence at all.  At the same time, there seems to be complete ignorance of a growing body of scientific literature linking ASD with air quality.  A quick search through peer-reviewed scientific literature using the Scopus database shows at least 160 papers that mention “autism and ‘air pollution'” somewhere in the publication over the past 20 years.

I don’t know a lot about ASD, but I can comment on air pollution and so here I’ll discuss what I see from some of this literature.  Much of the research literature is only fully available if you have access to a university library (like me), but I’ll try to provide some links to at least the summary or abstract of the studies.  Much of this literature is highly technical however, so don’t worry if it’s not so easy to digest.

Continue reading

Formula For Writing An Attention-Grabbing Cover Letter

HR managers say that many job hunters are not writing cover letters anymore. Learn how you can standout if you use these proven cover letter writing formula.

Source: Formula For Writing An Attention-Grabbing Cover Letter

—————————————–

Comment:  This is a pet peeve of mine, after having served on multiple hiring committees for faculty (and some staff) positions.  I’m surprised at how many applicants don’t provide a cover letter to start off their extensive faculty C.V. and other documents.  My practice is to generally ignore applications without a cover letter.  Why?  There are several reasons:

  1. I suspect that the lack of a cover letter implies that the applicant is not that serious about the position, or
  2. the applicant doesn’t actually meet the requested qualifications and doesn’t want to highlight that fact,
  3. If there is no cover letter, the applicant essentially expects me to sort through 20+ pages of C.V. and other stuff, and try to figure out how they fit into our advertised requirements for teaching and research experience.  There are sometimes 100+ applicants and my time is quite valuable.  Why not provide a cover letter where you can highlight your key features and experience and tell me how it may meet our needs?  Then I can spend my time looking into the details and considering whether I agree.  Job seekers should not expect hiring committees to do their work for them.

So if you’re truly interested in a job (especially a professional or higher level position), spend some time researching and analyzing the position and do a brief cover letter that highlights things of interest to the employer.  It might not get you the job, but at least it’s more likely to pass the first stage of screening.

Toronto Engineering Program Enrollments

Waterloo Engineering has direct program admission, meaning that there is no general first year.  The co-op program you start on day 1 is where you stay, unless some other path opens up to you and you take it.  This also means that the number of students in each program is relatively stable from year 1 to 2 to 3, etc.  A few drop out for various reasons along the way, but nothing too drastic.

Toronto Engineering has an interesting “hybrid” admission process, where some students are admitted directly to a program (like us), and some are admitted to a more general “Track One” program for first year.  The Track One students move into other programs for 2nd year.  I thought it might be interesting to see how that admissions approach affects program enrollments in 2nd year, and luckily they publish their data in their academic calendar so it’s easy to figure out.  You just have to pick a calendar from a previous year, look at year 1 data, then pick the calendar for the following year and look at year 2 data to see the progression for a cohort of students.  For the example I compiled below, I picked the 2014 and 2015 calendars. Continue reading